Pagina de Calculo
UNIDAD I: INTRODUCCION AL CALCULO
1.1 Clasificacion y propiedades de los numeros reales
1.2 La recta numerica y concepto de intervalo
1.3 Valor absoluto
1.4 Desigualdades
1.5 Funciones algebraicas y sus graficas
1.6 Funciones trigonometricas y sus graficas
UNIDAD II: LIMITES Y CONTINUIDAD
2.1 Definicion de limite
2.2 Teoremas de limites
2.3 Limites de funciones algebraicas y trascendentes (trigonometricas)
2.4 Funciones continuas
UNIDAD III: LA DERIVADA
3.1 Fracción de la derivada y su interpretación geométrica
3.2 Reglas para calcular la derivada
3.3 Calculo de la derivada de funciones algebraicas por formula
3.4 Derivadas de funciones trascendentes (trigonometricas)
3.5 Incrementos y diferenciales
3.6 Reglas de la cadena
UNIDAD IV: APLICACIONES DE LA DERIVADA
4.1 La derivada como razon de cambio
4.2 Ecuaciones de la recta tangente y la normal
4.3 Puntos maximos y minimos de funciones
4.4 Criterios de la primera y sugunda derivada
4.5 Calculo de los puntos de infleccion de una funcion
4.6 Ejercicios de aplicacion
UNIDAD V: TEOREMAS PARA LA SOLUCION DE INTEGRALES
5.1 Definición de la integral definida
5.2 Propiedades de la integral definida
5.3 Teoremas del valor medio de la integral
5.4 Teorema integral de cálculo
UNIDAD VI: TECNICA DE INTEGRACION
6.1 Integracion por partes
6.2 Integrales trigonometricas
6.3 Sustitucion trigonometrica
6.4 Fracciones parciales
6.5 Ejercicios de aplicacion
 

4.4 Criterios de la primera y sugunda derivada

4.4 Criterios de la primera y segunda derivada

Criterio de la primera derivada
  La base del presente criterio radica en observar que los máximos o mínimos locales son consecuencia de observar los siguientes hechos:
 
1.- Cuando la derivada es positiva la función crece.
2.- Cuando la derivada es negativa la función decrece.
3.- Cuando la derivada es cero la función tiene un máximo o un mínimo.
 
Sea f(x) una función y c un número en su dominio. Supongamos que existe a y b con a<c<b tales que
 
1.- f es continua en el intervalo abierto (a,b) (de acuerdo con el teorema de Rolle)
2.- f es derivable en el intervalo abierto (a,b), excepto quizá en c;
3.- f´(x) es positiva para todo x<c en el intervalo y negativa para todo x>c en el intervalo.
 
Entonces f tiene un máximo local en c.
 
Nótese que un criterio similar puede tenerse para obtener un mínimo local, solo es necesario intercambiar “positivo” por “negativo”.
 
 
 
De manera intuitiva podemos observar que para determinar si existe un máximo o un mínimo basta graficar alrededor de los puntos donde se ha presentado un cambio de signo Es también importante tener en consideración que el termino alrededor del cambio de signo de la derivada de la función es muy relativo y es este punto donde tenemos que tener la máxima consideración.
Un punto mas a considerar es el tener en cuenta que solo es necesario considerar no solo el cambio de signos para la derivada Por ejemplo, para el caso de la función:
 
Criterio de la primera derivada
 
La base del presente criterio radica en observar que los máximos o mínimos locales son consecuencia de observar los siguientes hechos:
 
1.- Cuando la derivada es positiva la función crece.
2.- Cuando la derivada es negativa la función decrece.
3.- Cuando la derivada es cero la función tiene un máximo o un mínimo.
 
Sea f(x) una función y c un número en su dominio. Supongamos que existe a y b con a<c<b tales que
 
1.- f es continua en el intervalo abierto (a,b) (de acuerdo con el teorema de Rolle)
2.- f es derivable en el intervalo abierto (a,b), excepto quizá en c;
3.- f´(x) es positiva para todo x<c en el intervalo y negativa para todo x>c en el intervalo.
 
Entonces f tiene un máximo local en c.
 
Nótese que un criterio similar puede tenerse para obtener un mínimo local, solo es necesario intercambiar “positivo” por “negativo”.
 
 
 
De manera intuitiva podemos observar que para determinar si existe un máximo o un mínimo basta graficar alrededor de los puntos donde se ha presentado un cambio de signo Es también importante tener en consideración que el termino alrededor del cambio de signo de la derivada de la función es muy relativo y es este punto donde tenemos que tener la máxima consideración.
Un punto mas a considerar es el tener en cuenta que solo es necesario considerar no solo el cambio de signos para la derivada Por ejemplo, para el caso de la función:
 

Criterio de la segunda derivada
 
Uno de los ordenes de derivación es el de la segunda derivada, aunque no es despreciable la utilización de las derivadas de orden superior, sobre todo en cálculo de errores. Curiosamente las aplicaciones físicas implican, por lo general, derivadas de segundo orden como podría ser las ecuaciones de movimiento.
 
En esta sección presentaremos una interpretación gráfica de los criterios de la segunda derivada que nos servirá para poder obtener los máximos o mínimos de una función. Antes de analizar como es la relación de la segunda derivada conoceremos algunas definiciones:
 
Definición.
Cóncava hacia abajo. Se dice que una función es cóncava hacia abajo cuando la primera derivada es creciente en un intervalo abierto (a,b)
 
 
 
 
Definición.
Puntos de inflexión y número de inflexión. Sea f una función y a un número. Supongamos que existe números b y c tales que b<a<c y además:
 
a)      f es una función continua en el intervalo abierto (b,c)
b)      f es una función cóncava hacia arriba y cóncava hacia abajo en(a,c), o viceversa.
 
Bajo las condiciones anteriores el punto(a,f(a)) se llama punto de inflexión, y al número a se llama número de inflexión.
 
Si la segunda derivada f´´ de una función f es positiva en un intervalo abierto (a,b) es porque la primera derivada es creciente en ese intervalo.
 
 
 
 
 
 
 
 



Hoy habia 27 visitantes (34 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis